Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model
نویسندگان
چکیده
In this paper, we present a theoretical and modeling framework to estimate the fractions of photosynthetically active radiation (PAR) absorbed by vegetation canopy (FAPARcanopy), leaf (FAPARleaf ), and chlorophyll (FAPARchl), respectively. FAPARcanopy is an important biophysical variable and has been used to estimate gross and net primary production. However, only PAR absorbed by chlorophyll is used for photosynthesis, and therefore there is a need to quantify FAPARchl. We modified and coupled a leaf radiative transfer model (PROSPECT) and a canopy radiative transfer model (SAIL-2), and incorporated a Markov Chain Monte Carlo (MCMC) method (the Metropolis algorithm) for model inversion, which provides probability distributions of the retrieved variables. Our two-step procedure is: (1) to retrieve biophysical and biochemical variables using coupled PROSPECT+SAIL-2 model (PROSAIL-2), combined with multiple daily images (five spectral bands) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor; and (2) to calculate FAPARcanopy, FAPARleaf and FAPARchl with the estimated model variables from the first step. We evaluated our approach for a temperate forest area in the Northeastern US, using MODIS data from 2001 to 2003. The inverted PROSAIL-2 fit the observed MODIS reflectance data well for the five MODIS spectral bands. The estimated leaf area index (LAI) values are within the range of field measured data. Significant differences between FAPARcanopy and FAPARchl are found for this test case. Our study demonstrates the potential for using a model such as PROSAIL-2, combined with an inverse approach, for quantifying FAPARchl, FAPARleaf, FAPARcanopy, biophysical variables, and biochemical variables for deciduous broadleaf forests at leafand canopy-levels over time. D 2005 Elsevier Inc. All rights reserved.
منابع مشابه
Characterization of seasonal variation of forest canopy in a temperate deciduous broadleaf forest, using daily MODIS data
In this paper, we present an improved procedure for collecting no or little atmosphereand snow-contaminated observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The resultant time series of daily MODIS data of a temperate deciduous broadleaf forest (the Bartlett Experimental Forest) in 2004 show strong seasonal dynamics of surface reflectance of green, near infrar...
متن کاملMonitoring spring canopy phenology of a deciduous broadleaf forest using MODIS
Climate change is predicted to alter the canopy phenology of temperate and boreal forests, which will affect carbon, water, and energy budgets. Therefore, there is a great need to evaluate remotely sensed products for their potential to accurately capture canopy dynamics. The objective of this study was to compare several products derived from the Moderate Resolution Imaging Spectroradiometer (...
متن کاملEstimating forest parameters from top of atmosphere multi-angular radiance data using coupled radiative transfer models
Traditionally, the estimation of forest parameters using physically-based canopy radiative transfer models (RT) requires correcting the remote sensing data to top-of-canopy (TOC) level by inverting an atmosphere RT model. By coupling the same canopy and atmosphere models, it is possible to simulate the top-of-atmosphere (TOA) radiance and to work directly with the measured TOA radiance data, th...
متن کاملEstimating vegetation water content with hyperspectral data for different canopy scenarios: Relationships between AVIRIS and MODIS indexes
Three linked leaf and canopy radiative transfer models were used to assess uncertainties in three vegetation architectures for the relationships between canopy water content and Equivalent Water Thickness (EWT). The leaf radiative transfer model PROSPECT was linked to SAILH, rowMCRM, and FLIM canopy reflectance models to generate synthetic spectra for a range of leaf and canopy parameters under...
متن کاملInversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland
Radiative transfer models have seldom been applied for studying heterogeneous grassland canopies. Here, the potential of radiative transfer modeling to predict LAI and leaf and canopy chlorophyll contents in a heterogeneous Mediterranean grassland is investigated. The widely used PROSAIL model was inverted with canopy spectral reflectance measurements by means of a look-up table (LUT). Canopy s...
متن کامل